PP

ATION
Vi

Greetings and welcome in the official documentation of MMO
Accounts & Characters System 2!

Thank you for buying this solution, I hope it will be a great booster
for your game.

In this documentation | will cover everything about this asset, by
describing every single element and by guiding you step-by-step on
how to use and expand this system’s functionalities.

For every doubts, info or request related to this asset do not hesitate to
send me an e-mail at “silvematt@Ilibero.it”, you will be surely
answered in less than 24hrs.

The first thing that we need to make MMO ACS 2 work is to setup a
server and a database. You can use a real server just as | did with the
demao, this will let all the people in the world to be able to play your
game, or you could setup a local environment for developing and
testing your project, which is the recommended solution if you’re
starting making your game.

In this section we’ll use XAMPP, it allows us to have a virtual server
in our machine with everything already setup. You just have to
download and install it.

Link: https://www.apachefriends.org/index.html

Once you’ve installed and opened it, you should see something like
this:

[E] XAMPP Control Panel v3.24 [Compiled: Jun 5th 2019] — [m| X
XAMPP Control Panel v3.2.4 & Config
Modules Y
Hetstat
Service Module PID(s) Port(s) Actions g Nesl
9924
Apache 13384 449, 8080 Stop Admin Config Logs B Shel
MysaL 9812 3308 Admin Config Logs Explorer
FileZilla Start Admin Config Logs E‘ Services
Mercury Start Admin Config Logs & Help
Tomcat Start Admin Config Logs [cwit
23:22 [main] All prerequisites found ~
23:22 [main] Initializing Modules
23:22 [main] Starting Check-Timer
23:22 [main] Control Panel Ready
23:26 [Apache] Attempting to start Apache app...
23:27 [mysql] Attempting to start MySQL app...
23:27 [Apache] Status change detected: running
23:27 [mysql] Status change detected: running
v

Start both ‘Apache’ and MySQL. The first thing that we’ll do is to
move the PHP scripts from the Unity Project to the local server.

https://www.apachefriends.org/index.html

Go in the installation directory of XAMPP and reach the folder
‘htdocs’, here is where the server is locally hosted.

Create a new folder named ‘MMO_ACS2’ (or everything you like, a
name without spaces is recommended), in the folder you’ve just
created create another one named ‘Scripts’.

Copy and paste all the files from the folder
/YourUnityProject/Assets/MMO ACS 2/PHP/
To

Ixampp/htdocs/MMO _ACS2/Scripts/

That’s should be the situation:

I » ThisPC » Local Disk (C:) » xampp » htdocs » MMO_ACSZ » Scriptsl

N

MName Date modified Type Size

E checkcharacters.php 8/09/2019 17:34 PHP File 3KB
E createnewcharacter.php 2019 17:26 PHP File KB
E database.php 19 17:29 PHP File TKB
E deletecharacter.php 19 17:26 PHP File TKB
E functions.php 19 17:26 PHP File TKB
| IMMORTAL.ttf 19 17:26 TrueType font file 167 KB
Elogin.php 19 17:26 PHP File 4KB
& MMOACS2_WebBg.png 19 17:26 PMG File 809 KB
E recoverpassword.php 19 17:31 PHP File 5KB
E register.php 19 17:30 PHP File 5KB
E resetpassword.php 19 17:26 PHP File 5KB
E runtimesave.php 019 17:26 PHP File 3 KB
E verify.php 8/09/2019 17:26 PHP File 4KB

Once you did that, you’re half ready!

Open up ‘database.php’:

define("SERVER_NAME', 'localhost’);
d ('DB_NAME®, “mmoacs2_db");
define('DB_USER', ‘root');
define('DB_PASS',"");

define(' TAB_ACCOUNTS®, 'accounts');
define('TAB_PLAYERS', ‘characters®);

define('SUPPORT_EMAIL_ADDRESS', 'yourmail@yourdomain.com');

PDO("mysql:host=".SERVER_NAME."; dbname=".DB_NAME,

Here you will have to say where the database is and how to access to
it. If you’re sticking with XAMPP and this guide just leave everything
as it is, otherwise if you’re using a real server insert the host and
database information here.

The only thing that you’ve to modify is the

SUPPORT_EMAIL_ADDRESS, XAMPP requires a very little and
fast configuration to let you send emails from localhost.

You can see a discussion on Stack Overflow regarding this here:
https://stackoverflow.com/questions/15965376/how-to-configure-
xampp-to-send-mail-from-localhost

https://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost
https://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost

The last thing that you have to do is to import the database.

Open the XAMPP panel and click on the ‘Admin’ button in line with
MySQL:

XAMPP Control Panel v3.2.4 [Compiled: Jun 5th 2013] - O X
XAMPP Control Panel v3.2.4 F cont
Modules &

Service Module PID(s) Port{s) Actions @) Netstat
Apache 19:23; 4498080 | stop Admin Config Loge B shel
MySaL 9812 3306 Config Logs | Explorer
FileZilla Start Admin Config Logs ' Services
Mercury Start Admin Config Logs @ Help
Tomcat Start Admin Config Logs |_—|. Quit

17:23:22 [main] All prerequisites found ~

17:23:22 [main] Initializing Modules

17:23:22 [main] Starting Check-Timer

17:23:22 [main] Control Panel Ready

17:23:26 [Apache] Attempting to start Apache app...

17:23:27 [mysql] Attempting to start MySQL app...

17:23:27 [Apache] Status change detected: running

17:23:27 [mysql] Status change detected: running

v

This will open up PhpMyAdmin, a software that allows you to
manage your databases:

From there create a new database with the same name as the field
‘DB_NAME’ in the script ‘database.php’.

php 7l Server: 127.0.0.1

OElO0) &%e i Databases =[] SQL (§ Status | =7 Useraccounts | =} Export | [&
Recent Favorites
1 &
S New Databases
| Information_schema
-:I-_ 1) mysql

4 Create database g
+ | performance_schema 2

|
+{4 ph dmi
J phpmyadmin mmoacs2_db latinl_swedish_ci ~ Create
Database =« Collation Action 3
information_schema utfd_general_ci @&z Check privileges
mysgl latinl swedish ci @:| Check pl’i\;‘ilegES

performance_schema ucf2_gemeral_ci &3 Check privileges
[1 phpmyadmin ucz8_bin as Check privileges

Total: 4 latinl swedish ci

t+ [] Check all With selected. [Drop

Now all you have to do is to import the .SQL file present in your
Unity Project:

/Y ourUnityProject/MMO ACS 2/Database/mmoacs2_db.sql
On PhpMyAdmin:
To do that:

phpMyAdmin M 7] Server: 127.0.0.1 » @ Database: mmoacs2_db
DEle & e 24 Structure L[] SQL | <4 Search | (J Query = Export & Operations

Recent Favorites

@@
' . n "
4 New Importing into the database "mmoacs2_db
%__J information_schema
=L | mmoacs2_db
¥ mysql File to import:
*-4 performanc?_schema File may be compressed (gzip, bzysg, zip) or uncompressed.
4| phpmyadmin A compressed file's name must eng”in .[fermat].[compression]. Example: .sql.zip

Browse your computer:l Sfoglia... | mmoacs2_db.sql I (Max: 2,048KiB)

You may also drag and drop a file on any page.

Character set of the file: utf-8 ~

Partial import:

Allow the interruption of an import in case the script detects it is close to the PHP timeout limit. (This mig

-

Skip this number of queries (for SQL) starting from the first one: |D - |

Other options:

Enable foreign key checks

Format:

SQL w

Format-specific options:

SQL compatibility mode: | NONE ~

Do not use zuTo_1ncazuzwT for zero values

3

8|

Now the database is imported, and you’re ready to start using MMO-
ACS 2!

The last thing you may want to setup is a class inside the project:

“WebAddresses.cs™:

SERVER_SCRIPTS = "
FORGOT_YOUR_PASSWORD = "

Adjust those addresses and you’re ready to start with MMO ACS 2!

Client side the Login and Registration process is handled by
‘LoginRegistrationManager.cs’, attached to the GameObject
‘Login/Registration Manager’ in the Login scene.

This script is very simple, it holds some references to the
GameObjects who contains all the Ul for the Login and Register
section, and of course every InputField.

The Login and Registration process is nothing more than a
UnityWebRequest sent with a WWWForm.

If you don’t know those classes check the official documentation:

UnityWebRequest: https://docs.unity3d.com/ScriptReference/Networking. UnityWebReguest. html

WWWForm: ntips://docs.unity3d.com/ScriptReference/WWWForm.html

The request for the login is asked on the server to the script
‘login.php’. While for the registration we call ‘register.php’. You
will find all the .php code commented.

Mainly what the ‘login.php’ script does is to check:

e If the received form is correct.

e If the values in the forms are safe for being processed.

o If the inserted account exists.

e If the inserted password is correct (after being encrypted).
e |f the account is banned.

e If the account is active.

If all those conditions matches, the user will be able to login.
Otherwise he will be prompted with the response for his case.

https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html
https://docs.unity3d.com/ScriptReference/WWWForm.html

The ‘register.php’ works almost the same:

o If the received form is correct.

o |f the values in the forms are safe for being processed.
¢ If the inserted account name is not used yet.

e If the inserted email is not used yet.

If all those conditions match the last thing the script will do before
terminating its execution and returning a message to the client is to
send an email to activate the account on the address the user inserted
while registering.

Otherwise he will be prompted with the response for his case.

So the register.php contains the activation email, and there’s where
you should modify that thing:

il=".$P0STemail. &hash=".%hash."

The highlighted line shows where the user will be redirected, and it’s
to the script ‘verify.php’.

This script inside an HTML page will get the values from the URL
(email=".$POSTemail.'&hash=".$hash.") and validate them.

If everything is correct the Account will be activated and the user will
be able to login with his account.

Otherwise if those values are not correct, the user has probably tried
to manipulate the URL, in that case the script will simply stop the
execution and prompt the user with a message.

The last thing you can do from the Login scene is to open the ‘Forgot
Your Password’ link that must point to the script
‘recoverpassword.php.

That’s another HTML page with some PHP in it.

From there as you may already saw in the demo, after inserting the
email in the InputField, if the email is associated to an account in your
database the script will send a mail to the account.

So the last link that you have to modify is in this script:

$subject 'MMO Accounts & Characters System 2 | Recover your account password.’;
$message

This is an automatic email, please do not reply.

Hi!
We have recived a request of resetting your password.
If you havent done that just ignore this email, otherwise click on the link below to reset your password.

Please click this link to reset your password:
http://localhost/MMO_ACS2/Scripts/resetpassword.php?email="_%to. '&passhash="_%Passwordhash.’

The resetpassword.php is another HTML page that will let the user
reset his password.

In the Login scene you may have noticed the “GameResources”
GameObject, with its script attached.

© Inspector
f J GameResources
i =
Tag | Untagg Layer |Default
Frefab
Transform
Position
Rotation
Scale

Game Resources (Script)

Element O
Element 1

Element 2

Element 0
Element 1
Element 2
Element 3
Element 4
Element &
Element &
Element 7
Element &
Element 2
Element 10
Element 11

dd Component

This script holds a collection of Assets used in the game.

You can see this class like a replacement of the ‘Resources’ folder
and its slow loading times. From this class you can load at runtime a
Race, a GameClass or a GearPiece just by passing the ID. This class
comes extremely useful when we have to convert the IDs from the
database to actual game data (Race, GameClass, equipped Gear).

Still on a production | would recommend to use Assets Bundles
instead.

SEIRVEIR SIBILBCITIONE

The first thing after a successfully login that he user will see is a list
of servers. In the default case those servers point to nowhere.

The server selection is indeed just a template that you may or not may
want to have in your game.

Name Latency Population

The Nine Divines il Join

Last Seed | Medium Join

The Mythic Dawn Low Join

rver Name (TextMeshProUGU

B Population (TextMeshProUGUI
@ Join Button (Button

The Server Selection system is composed of 2 scripts:

e ServerSelectionManager: Manages the servers and will
manage the connection to your servers.

e ServerlnList: Represent a server and its information, like
Latency and Population.

Whenever we press the ‘Join’ button on a server we’ll call :
public void ConnectToServer(ServerInlList server)

In this method you’ll have to insert the code to connect to your
Servers.

Nothing more. In the Demo the Game Server doesn’t exist since we’ll
join in a local scene.

IRACIESS

Before getting into the actual Character Selection, Creation and
GameScene, let’s see how we are able to create the data of the game.

To create a new Race:

Right Click on the Project Window -> Create -> MMO ACS 2 ->
Races -> New Race:

MMO ACS 2 ¥ Gear

Classes

Races

Folder

C# Script

Shader b
Testing >
Playables >
Assembly Definition

Create » TextMeshPro >

Show in Explorer

Scene

Open Prefab

Delete
Audio Mixer
Rename

Copy Path Alt+Ctrl+C Material

For creating a new race what you need to have is:

e A prefab of the Male Model of your Race.
e A prefab of the Female Model of your Race.

Those two prefabs are called ‘Base *Race™ Model’.

Those prefabs represent the ‘naked’ model, without any type of gear,
hair or any other detail.

Every ‘Base *Race* Model’ must have those components attached:

e An Animator with the correct Avatar.
e GFXCharacter script with the ‘BodyMesh’ set.

Add Component

BodyMesh, in GFXCharacter is the SkinnedMeshRenderer of the
model. This must be set manually while the other fields must remain
empty since they’ll be set at runtime.

To work with the Equipment System, your Models should have the
same BlendShapes of the ones in the project. But don’t worry. If
you’re not planning to add those specifically BlendShapes, if you
want to remove some or not use them at all you are able to modify
that and I’ll explain how in this documentation.

Let’s take a look at the RaceCreationWindow:

None (Runtime & @

Male

FEMALE

We have to setup some data here, like the Icon, the Base Models
we’ve talked before, modifications for the Race and on the right what
class can be used.

e |D: Identifies univocally a Race. It’s extremely important that
this value doesn’t change once it’s saved on the database.
When a character is saved on the database, his race will be
identified by the ID. So if we create a ‘Human’ (ID:0) in the
Game and then modify the ID of the ‘Human’ ScriptableObject
with the value of 1, you’ll get an error. It’s also important if
you’re not in the developing process to not modify the order of
Races. If we swap the IDs of the two races in the Demo, who
were a Human is now a Deamoran and who were a Deamoran is
now a human. Also don’t assign the same ID to different races,
you’re anyway not allowed to do that since the Window will
prompt you an error.

e Race Name: The Name of the Race in the game, what will be
displayed on the character selection and in many other
situations.

e Section ‘Male’ and ‘Female’: Here you can assign the details
of your Race, how he moves (Animator) and how he looks like.
To add a new Skin Colour, a new HairType or HairColor you
only have to add a new element to those arrays.

* Remember that for the array ‘MaleHairTypes’ and ‘FemaleHairTypes’ the
Element 0 must be null since the value 0 of the HairType says that the
character is bald.

On the section ‘Can Use Classes’ you decide what classes will be
able this Race will be able to play. This section is automatically built.
That means if you add a New GameClass to the project it will appear
in this section.

Here is a completed Race:

Race
Configuring: Human

Icon:

Human Race ©

®Base Human Male © 3as uman Fem: © [preyiew

ID:
Race Mame Human
MALE

Animator: ® Human Base! ©

Male Hair Colars

FEMALE

Animator: ¥ Human Baset @

GAMIE CILASSIESS

To create a new GameClass:

Right Click on the Project Window -> Create -> MMO ACS 2 ->
GameClasses -> New GameClass:

GameClass

For the ID it’s the same thing of the Races.

¢ Initial Stats: Defines the initial stats of this class (upon
creation).

e Starting Gear: Defines the starting gear of this class (upon
creation).

e Class Name: The Name of the GameClass in the game, what
will be displayed on the character selection and in many other
situations.

e Class Description: The description of the GameClass that will
be displayed on the Character Creation.

When a new class is created if you modify an existing or add a new
race, you will be able to choose if that race can use the new class:

Configuring: Human

GIRBAIRS

To create a new GearPiece:

Right Click on the Project Window -> Create -> MMO ACS 2 ->
Gear -> New Gear Piece:

For the ID it’s the same thing of the Races and GameClasses.

Name: The Name of the GearPiece in the game.

Hide Hair?: Should the hair disappear if this item is equipped?
This is mainly used for helmets.

StatsModifier: Define which stats this piece affect and how.
GearSlot: Define the slot of this item.

On the upper-right you can see the ‘Gear Models’, here you have to
assign for both genders the models of all the races.

Every Race created and present in the project will be displayed here.
Assign the prefabbed SkinnedMeshRenderer for every Object field.

With the ‘BlendShapes’ button you can define the BlendShapes
modifiers when this gear piece is equipped. If we’re equipping an
armature we may want to shrink the chest of our character model to
prevent clipping the body with the armature model.

If we click on the BlendShapes button this Window will appear:

of the item: New Armature (Male)
emove modifiers for the Blendshapes of the each

Element 1
This Blend Shape
Weight

Since you may want to have different models for the gear piece you
can define different SkinnedMeshRenderer and BlendShapes for each
Race and both genders.

IRIBILPIRIR WINIDOW 3

As seen that Races, Classes and GearPieces utilizes IDs for
identifying a specific thing in the project. A conflict or a mismatch of
IDs will surely lead you to bugs.

Remember that every Race, GameClass and GearPiece must have
unique ID.

You can open up the MMO ACS 2 Helper Window to help you with
those checks from Windows -> MMO ACS 2 -> Helper Window:

ent | Window Help

Mext Window Ctrl+Tab
Previous Window Ctrl+5hift+Tab
Layouts *

MMO ACS 2 * Helper Window

Utility:
Check for ID conflicts

It is organized in tabs:

e Races: List all the Races in the Project and allows you to run an
‘ID Conflict Check’ with them.

e GamecClass: List all the GameClasses in the Project and allows
you to run an ‘ID Conflict Check’ with them.

e GearPieces: List all the GearPieces in the Project and allows
you to run an ‘ID Conflict Check’.

e Other: Allows you to run general fixes if something in your
project is wrong.

CONFLICT CHECK:

Let’s look at this situation, we have two Races in the project with the
same id (0):

Refresh
Found 3 races
Race Name: New Race - Race ID: O

& MNew Race (Race)

Race Mame: Human - Race ID: O

& Human (Race)

Race MName: Deamoran - Race ID: 1

@ Deamoran (Race)

Utility:
Check for ID conflicts

If we run a ‘Check for ID conflicts’ this will be the result:

Utility:
Check for ID conflicts

The console will provide us all the information we need in order to fix
the issue:

ause Editor
y [02: g nflict: Detected between 'New Race' and 'Hurman' with the ID: O

* Un it';.-'El'u _1 i-|'|-5 IZ-L ug: L_ -__'IEI'I ar(Object)

The other tabs will just display all the GameClasses/GearPieces in the
Project and will let you run a ‘Conflict ID Check’.

Don’t forget to often use this tool!

Let’s see how we can retrieve the data of a character from the
database and show it in the game as a Character.

The “CharacterSelectionManager” class will do that. We’ll see how
it works, it’s very important that you understand how we take and
distribute Characters data from the database to the Character Ul
representation and then to the game.

For understanding the CharacterSelectionManager class we have to
firstly take a look to other few scripts.

In the Character Selection we have a Ul representation of the
characters bounded to our account:

Cyrodiil

Level: 80 Human Priest

Flavum

Level: 1 Human Warrior

Those UI elements are instances of the prefab: ‘CharacteriInList’.
Those prefabs are composed of Texts and a ‘CharData’ GameObject.
They also have a script attached that has same name.

The CharData holds all the data of a character. This data is filled
while we're retrieving the characters from the database, they are filled
from the script ‘Character Selection Manager’ and saved in the
CharData script.

Open up the CharData script:

You see that in this class we’ve got all the variables that we’ve
created in the database. As we said before the CharacterInList have a
reference to the CharData of the current character, this will be used
widely also later in the Demo scene.

Let’s return to the “CharacterSelectionManager” class.
This script manages the Character Selection; it achieves:

e Detecting Characters from the database and instantiate them as
‘CharacterInList’ prefabs.

e Sorting Characters in the list by ID.

e Delete characters.

e Allows to load the next scene.

So this is a really important part of MMO-ACS 2.

Let’s take a look on how we actually retrieve characters from the
database and transform them into ‘CharacterInList’, from there once
we’ve got the ‘CharData’ filled, we don’t have to do nothing more
than spawn the correct Character Model, assign the correct Race and
GameClass value and we’ll be ready to go.

In the ‘CharacterSelectionManager.cs’ jump to the IEnumerator
‘CheckCharacters’.

What we do in this IEnumerator, is to open the “checkcharacters.php”
script from our server with a UnityWebRequest. We’ll send that
request with a form that will contain the username we’ve used while
we were logging in. Remember that the Account static class have a
reference to the username, so that’s the parameter that we will send in
the form:

form.AddField("user", Account.user);

Now take a look on the “checkcharacters.php” to see how it works.
What it will simply do is to pick all the character of that username and
send them back to Unity with a specific syntax. If no characters exist
for that account it will simply return ‘0’ and from Unity we will ask to
the user to create a new character.

That’s what you will receive from the “checkcharacters.php” if a
character exists.

ID:3INAME:Cyrodiil GENDER:1|LEVEL:80|RACE:0|CLASS:3|
SKIN:O|HAIRTYPE:1|HAIRCOLOR:4|STRENGHT:0JAGILITY
O]INTELLECT:0|SPIRIT:0/ARMOUR:0|CRITICALCHANCE:0
IMELEEDAMAGE:0|SPELLDAMAGE:0|HEADEQUIPPED:-
1|CHESTEQUIPPED:5|HANDSEQUIPPED:-
1|LEGSEQUIPPED:-1|FEETSEQUIPPED:-
1|IRHANDEQUIPPED:-1,;

It is that simple:

You have written in caps the index of a value (‘ID’), then you have
‘.’ (that means ‘equals’) and then it’s value (3).

After every values you will find the separator ‘|, means that the
following index and value will be of another variable.

The last thing is the semicolon at the end °;’ that means all the data of
the current character has been echoed.

So all the columns of the database will be inserted in a string like that
and sent to Unity.

In the first example there was only the character named ‘Cyrodiil” on
the database, in the following one there will be 2 characters, notice
where the “;” separator applies.

ID:1INAME:Vaultboy|GENDER:0|LEVEL:80|RACE:0|CLASS:0|
SKIN:3|HAIRTYPE:1|HAIRCOLOR:0|STRENGHT:0JAGILITY
:0JINTELLECT:0|SPIRIT:0lARMOUR:0|CRITICALCHANCE:0
IMELEEDAMAGE:0|SPELLDAMAGE:OQJHEADEQUIPPED:11]
CHESTEQUIPPED:6|HANDSEQUIPPED:12|LEGSEQUIPPED:
7|FEETSEQUIPPED:83|RHANDEQUIPPED:-1;
ID:3INAME:Cyrodiil GENDER:1|LEVEL:80|RACE:0|CLASS:3|
SKIN:O|HAIRTYPE:1|HAIRCOLOR:4|STRENGHT:OJAGILITY
:0[INTELLECT:0|SPIRIT:0/ARMOUR:0|CRITICALCHANCE:0
IMELEEDAMAGE:0|SPELLDAMAGE:OJHEADEQUIPPED:-
1|{CHESTEQUIPPED:5|HANDSEQUIPPED:-
1|LEGSEQUIPPED:-1|FEETSEQUIPPED:-
1|JRHANDEQUIPPED:-1;

The class ‘CharacterSelectionManager’ will take all this data and
manage it by itself by splitting characters and make life easier when
it’s about transforming this data into actual game characters.

e Query result is the data all together (like in the example above)
while Characters is an array of strings that contains every
character as an array element with its own data.

Note: you will always get an empty line at the end of the array.

Now we will perform some actions with those values, so how do we
pick them form that string?

There is a function in the ‘InputHelper’ class that does that:

InputHelper.GetData(characters[0], "ID:")

Where characters[0] is the first element of the ‘Characters’ array we
saw in the pick before and ‘ID’ is the index of the value that we want.

In this case this line of code will return “1” as a string.

You can use int.Parse, float.Parse etc to transform those strings to
numbers.

Now there are some functions that are explained in the code that
makes the magic happens, there are all as simple as loading a Material
from an ID, ordering a list by a value, instantiating Ul elements and
spawning the character.

The InputHelper.GetData function will be widely used there to
transform IDs to their respective value in terms of game data, like the
GameClass, RaceData, Materials for the HairColor and Meshes for
the HairTypes.

CREATING CIEAIRACTIRBIRSE

Creating Characters is basically the opposite of Retrieving.

Instead of picking data from the database and get them to Unity we
will do the inverse, setting values from Unity and send them to the
database.

The process is handled by simple Toggles and Buttons. If you take a
look at the functions that the Toggles and Buttons calls when they’re
clicked everything will be self-explained.

There is only one thing to mention about the Class selection, as you
saw while creating a character you can select which classes can be
used for a specific race.

To automate this process while creating a character, so to disable the
toggles and the Ul of a non-available class for the current race we use
one script: ‘GameClassInCreation.cs’.

Its usage is extremely simple; you only have to set those values in the
inspector:

Everything will be managed from the system. Errors like ‘Character
Name is Already In Use’ or ‘Invalid Name’ will be managed server-
side, when we press on “Create New Character” and send a form to
the script “createcharacter.php” it will firstly validate all the data, then
If everything is ok it will create a new record on the database with our
new character.

Otherwise it will return an error message that will be managed from
Unity.

GAMIE IDRMO SCIENIES

Vaultboy
= i

In the Asset a Demo of what you should do next on your project is
included.

Here we will spawn our character model and attach it to a very simple
Character Controller that will let us move him around.

There are some NPCs in the World and some interactions like
changing gear and level is already scripted to give you an example on
how to change and save data at runtime. This should let you start
actually working on your project.

From the Character Selection Screen if we press on “Enter World”
few things will happen:

The parent of the Spawned Character Model will be cleared.
The parent of the CharData of the selected character will be
cleared.

The parent of the CharData will be set to the Spawned Character
Model.

The Spawned Character Model will be flagged with
‘DontDestroyOnLoad’.

The Loading Scene will be loaded.

The Loading Screen is managed by the script “FakeLoading.cs” that
will fake the load by adding some extra seconds before loading the
actual level where we can play (“3) World”).

The first thing that will happen into the World scene is in the script
‘SpawnManager.cs’. As the name may suggest this script will manage
the spawning process of our character, including setting up the Ul and
parenting the Character Model to the Controller.

The SpawnManager is initialized in the scene like that:

h ¥ Spawn Manager (Script)

Player Controller B Controller (FlayerController)

Gfy Character Mone (GF¥ Character)

@#FPlayer (Imaage)
mage)
E shPro Text (TextMeshProlGUT)
Char Level BlLevel (TextMeshProUGUI)

It will perform those actions:

e Taking a reference to the Character Model by its tag
‘GFXCharacter’.

e Parenting the Character Model to the Controller and resetting its
position.

e Setting reference to the Character Data and animator.

e Setting up the Ul (Name, Image etc) thanks to the CharData.

With that done we have our character model able to walk around the
world.

Other actions that we do in this level includes saving at runtime the
state of our character to the database. Indeed, if you change the gear
or the level of the character by interacting with the NPCs and then
logging out, you will see that the changes will persist.

This 1s managed by the script ‘RuntimeSaveManager.cs’.

To save the state to a character you only have to call the following
method from every script:

RuntimeSaveManager.instance.SaveCharData(characterData);

With this example you should be able to save at runtime any data you
will want to have in your game. Still you can use any method you
may prefer.

Let’s now take a look at the PlayerController class and how we
simply interact with the NPCs in the world:

B @Player Controller (Script)

Player

Free Look Cam

Pause Menu

Character

Data

Animator

Camera Transfarm Main Camera (Transform)
i Controller (Rigidbody)

apsule Collider)

Contraller Turn Speed
Is In Dialog

Raycast Shooter (Transform)
W Speak Text

You can read the code and the comments of this script, It’s all
explained.

What this script do:

Transform the Input of the Axis (Vertical and Horizontal) into
forces applied to our rigidbody.

Makes the Animator function properly.

Shoots Raycasts to detect NPCs.

Open Dialogs (by simply enabling Ul GameObijects) if a NPC is
near and a key is pressed.

The Dialogs are really simple, they’re a collection of Buttons that
does more or less the same action.

Those actions are written in the ‘ChangesAtRuntime.cs’ script. Here
you can see how to modify CharData at runtime, like the character
Level and how to equip and unequip gear and spawn the correct
model with the correct Blendshapes.

That’s all you have to know to kick-start your project.

In the next sections I will show step by step how to add new data to
the database and back, how to add new races, new classes and new
gear.

CREATING NEW CILASSE

Create a New Class and configure it from the Inspector.

Be sure that the ID is not the same as another class.

g: My New Custom Class

Initial Stats

RSeS| © Initial Stats

Element 0

Element 1
Starting Gear

Element 0 W Heavy Metal Helmet (GearPiece)

Element 0 ® Human (Race)

Element 1 @ Deamoran (Race)
Game Classes

S5ize 5

Element 0

Element 1

Element 2

Element 3

Element 4

Gear Pieces

@ My Mew Custom Class (GameClass)

Open a Race will be able to use this New Class and by configuring it,
flag it as usable class:

§race

Configuring: Human

Icon:
'Human Race @

Can use classes:

Open the “1) Character Selection” scene and modify the Creation Ul
by duplicating an existing class and modify the icon:

Right Panel
ul

The last thing to modify is the OnValueChanged of the Toggle and
the fields of the script ‘GameClassInCreation’.

= Transition

On Value Changed (Boolean)
Runtime Cnly + ! I'Ch
CreationM @

h v Game Class In Creation (Script) L= -

racterCreation¥ @

GENDER

g

RACE ‘ ’

My New Custom Class

CLASS DESCRIPTION

CUSTOMIZATIONS This is the class in the

tutorial in the Docs,
& Scin Color W
& Hair Type W)
@& Hair Color W

Create Character

CREATING NEW IRACIESE

Create a New Race and configure it from the Inspector.

Be sure that the ID is not the same as another race.

Race
Configuring: New Race

Tcon: Male Female
Unknownlco @

Base e Model:

® Base Human Male @ [Preview ®EBase Human Fem:é © [Preyview

¥ Human BaseAr ©

FEMALE

¥ Human BaseAr @

Insert the New Race in the correct GameResources array:
h Game Resources (Script)

Races
Size 3
Element 0 @ Human [Race)

Elerment 1 @ Dearmoran (Race)

Element 2 @ My New Race (Race)

Game Classes

Open the “1) Character Selection” scene and modify the Creation Ul
by duplicating an existing Race and modify the icon:

Race
My Mew Race

The last thing to modify is the OnValueChanged of the Toggle.

Is On
Toggle Transition Fade
Graphic @ Checlkmark (Image)

Group

On Value Changed (Boolean)

Runtime Cnly ! "'CharacterCreationManager.SelectRace

B CharacterCreationM @ & My New Race (Race)

And your race is now ready! In this example it will look exactly like
the Human race, you should import new models, animations and
customizations.

Remember that all the GearPieces that are now present in the Project
will need to be uploaded since they need the meshes for the new race:

GearPiece

Configuring: Heavy Metal Armour

Icon: Gear Models

Heavy Metal Armatur @

Male:
Human
Female:

Male:

EEIER Ri(Deamc @

Deamoran

Male: BMone (5 @

My New Race
EEIER BMone (5 @

Properties GearsSlot

10 1 Head

Mame: Heavy Metal Armour
Hide Hair?

Elerment 0

Flement 1

If you don’t add meshes to the new races in every gear piece you will
encounter error when trying to equip a piece.

CREATIING NIEW GIRAIRS

You can create a new Gear Piece just like you’ve created the Race
and the GameClass.

Create a New Gear Piece, configure it and assign it into the
‘GameResources’ ‘Gear Pieces’ array and it is ready.

AIDIDING INIBENW IDATTAS

There are few scripts to modify to add a new variable that will be
used in the system.

In my case | will create a variable named ‘EarringsType’. It will be an
integer that will represent the ID of the equipped earring. You can
make it work as a GearPiece or just as a mesh. The purpose of this
example is to show you how, what and where you have to write that.

The first thing | will do is to create a new column in the database on
the ‘Characters’ table:

P8 7iserver 127.0.01 » @ Database: mmoacs2_db »(Table: characters

EarringsType

Then I’ll open the script ‘CharData’ from the Unity Project, and add a
new variable with the same name and type of that we’ve made in the
database:

[System.Serializable]

CharData : MonoBehav

ID;
Name;

Gender;
Level ;

RacelID;
ClassID;

SkinID;
HairID;

HairColorID;

EarringsType;

Now we have to modify the query we do to the database when we ask
for all the columns values and when we create new rows, specifically
we also want to include that new column we created earlier:

Open the PHP script “checkcharacters.php”:

Add the new column in the SQL Command:

3 D, Name, Gender, Level, Race, Class, Skin, HairType, HairColor, Strenght, Agility, Intellect, S mour, CriticalChance, MeleeDamage, SpellDamage, HeadEquipped,
andsEquipped, LegsEquipped, FeetsEquipped, RHandEquipped, [EarringsType * TAB_PLAYERS." WHERE Account. untid ORDER BY ID ASC");

$stmt ~ $db->prepare("
d, H

ChestEquippe

Last thing here is to modify what will be sent to Unity, the long
‘echo’ function will do that, add the new column with the value took
from the database:

$characters = $stmt->rowCount();

{$characters > 8) {
($row

I
L

echo("ID:".$row["ID"]
" |NAME:" . $row["Name"]
" | GENDER: " .$row['Gender']
“|LEVEL: " $row[Level"]
"|RACE: " .$row['Race"]
"|CLASS: " $row["Class"]
"|SKIN:" . $row["Skin"]
" |HAIRTYPE: " . $row["HairType"]
" |HAIRCOLOR: ™ . $row["HairColor']
" | STRENGHT: " . $row[*Strenght ']
" | AGILITY:" $row['Agility’]
"| INTELLECT: " .$row["Intellect’]
"|SPIRIT:" . $row['Spirit’]
" | ARMOUR : " . $row['Armour " |
" | CRITICALCHANCE: " .$row['CriticalChance’]
" | MELEEDAMAGE : " . $row[*MeleeDamage "]
" | SPELLDAMAGE : " . $row|[* SpellDamage"]
" | HEADEQUIPPED: " .$row['HeadEquipped’]
" | CHESTEQUIPPED: " .$row['ChestEquipped’]
" | HANDSEQUIPPED: " . $row["HandsEquipped’]
" | LEGSEQUIPPED:" .$row['LegsEquipped’]
" | FEETSEQUIPPED: " .$row['FeetsEquipped’]
" | RHANDFOUTPPED - " $%rowl 'RHandFauinned’ 1
" | EARRINGSTYPE: " .$row["EarringsType’]
y Ja

You may also want to send this variable when you create a character,
let’s say this will be a customization. In this case you may also want
to modify the ‘createnewcharacter.php’:

Add a new variable that equals what’s sent in the POST form at index
‘EarringsType’.

(preg_match("/"[8-9] /™, input($_POST['EarringsType’])))
$EarringsType = input($_POST['EarringsType']);

{("There was an error. Please retry.");

Modify the query that insert a new record to also include the new
variable:

$stmt $db->prepare£”
(AccountID,
Name,
Gender,
Level,
el
Class,
Skin,
HairType,
HairColor,
HeadEquipped,
ChestEquipped,
HandsEquipped,
LegsEquipped,
FeetsEquipped,
RHandEquipped,
EarringsType,
SLIENENL,
Agility,
Intellect,
Spirit,
Armour,
CriticalChance,
MeleeDamage,
SpellDamage)

VALUES(
:fAccountID,
:fName,

: fGender,

:fHairType,

:fHairColor,

:fHeadEquipped,
:fChestEquipped,
:fHandsEquipped,
:flLegsEquipped,
:fFeetsEquipped,
: fTRHandEquipped,
:tEarringsType,

At the time we execute the query, we also need to bind the new
created parameter (:fEarringsType) to the value we’ve got from the
POST form before:

fstmt-rexecute(array(
"fAccountID" "$AccountID™,
"fNama™ “$Name",
"fGender™ "$Gender”,
"flLevel™ "$Level”,
"fRace" “$Race",
"fClass™ "$Class™,
“f5kin” “$5Skin™,
"fHairType™ "$HairType",
“fHairColor™ "$HairColor",
"fHeadEquipped™ "$HeadEquipped™,
"fChestEquipped” "$ChestEquipped”,
"fHandsEquipped" "$HandsEquipped”,
"fLegsEquipped™ "$legsEquipped”,
"fFeetsEquipped” "$FeetsEquipped”,
"fRHandEauipped” "$RHandEauipped” .
"fEarringsType" "$EarringsType",

Last two steps and all will be ready!

Open up the script ‘CharacterSelectionManager’, like said before in
this script we will load and transform the data we’ve got from the
database to actual player data. Reach the ‘CreateNewCharacterUl’
function and set the newCharData.EarringsType value to what we’ve
found on the database:

CreateNewCharacterInlList(i)

ject newChar = Instantiate(charInListPrefab, CharInlListContent);
terInlList newCharInlList = newChar.GetComponent<CharacterInlList>();
ta newCharData = newCharInList.data;

newCharData.ID = -Par nputHelper.GetData(characters[i], "ID:"));
newCharData.Name = er.GetData(characters[i], "NAME:");
newCharData.Gender -Parse(InputHe .GetData(characters[i], "GENDER:"));
newCharData.Level = -Parse(Inp GetData(characters[i],);
newCharData.RacelD = .Parse(InputHelp etData(characters[i],
newCharData.ClassID = -Parse(InputHel GetData(characters[i],
newCharData.SkinID = .Parse(InputHelp etData(characters[i],
newCharData.HairID = .Parse(InputHelpe etData(characters[i],)
newCharData.HairColorID = .Parse(U ~.GetData(characters[i],
newCharData.EarringsType =

The very last thing is to update the ‘CharacterCreationManager’
script and make the FORM sent to the script ‘createnewcharacter.php’
to also include the new variable:

IEnumerator ProcessCreateNewCharacter()

WWWForm form = WWWForm() ;

form.AddField("Username", ount.username);

form.AddField("Name", InputHelper.UppercaseFirst{nameInputField.text));
form.AddField("Ge ~", tempData.Gender);

form.AddField(" ', 1);

form.AddField(" tempData.RaceData.ID);

form.AddField("C ', tempData.GameClassData.ID);

form.AddField("sS , tempData.SkinID);

form.AddField("Hair", tempData.HairID);

form AddEialdf "Hair: " +emnData HairColarTD) -
form.AddField("EarringsType", tempData.EarringsType);

You’re all done at this point!

You may want to actually make this variable do something like spawn
a mesh or modify a colour, just like every other variable acts.

You only have to define what have to happen if that value changes,
you already have the variable sent to the database at the moment of
creation of the new character and when an existing one has been
retrieved.

That means if you code that if ‘EarringsType’ will define mesh
spawned on a character all you have to do, like the HairType, is to
spawn a mesh while the character creation screen (maybe with Ul
buttons) and spawn it when the character is retrieved.

| suggest you to read a bit of code specially where the HairType is
handled, it’s really about few lines on instantiating meshes.

Now you should have learnt all the elements of MMO Accounts &
Characters System 2 and you’re definitely ready to start building your
MMO, after you’ve practiced a bit with all those elements.

For every type of problem or questions you have regarding the Quests
Creation Kit do not hesitate me to send me an email at
“silvematt@libero.it”, I’ll do my best to help you!

| really wish you all the best for your project, thank you for using this
tool, | hope it will be a great booster and a resource to learn from!

