

Greetings and welcome in the official documentation of MMO

Accounts & Characters System 2!

Thank you for buying this solution, I hope it will be a great booster

for your game.

In this documentation I will cover everything about this asset, by

describing every single element and by guiding you step-by-step on

how to use and expand this system’s functionalities.

For every doubts, info or request related to this asset do not hesitate to

send me an e-mail at “silvematt@libero.it”, you will be surely

answered in less than 24hrs.

The first thing that we need to make MMO ACS 2 work is to setup a

server and a database. You can use a real server just as I did with the

demo, this will let all the people in the world to be able to play your

game, or you could setup a local environment for developing and

testing your project, which is the recommended solution if you’re

starting making your game.

In this section we’ll use XAMPP, it allows us to have a virtual server

in our machine with everything already setup. You just have to

download and install it.

Link: https://www.apachefriends.org/index.html

Once you’ve installed and opened it, you should see something like

this:

Start both ‘Apache’ and MySQL. The first thing that we’ll do is to

move the PHP scripts from the Unity Project to the local server.

https://www.apachefriends.org/index.html

Go in the installation directory of XAMPP and reach the folder

‘htdocs’, here is where the server is locally hosted.

Create a new folder named ‘MMO_ACS2’ (or everything you like, a

name without spaces is recommended), in the folder you’ve just

created create another one named ‘Scripts’.

Copy and paste all the files from the folder

/YourUnityProject/Assets/MMO ACS 2/PHP/

To

/xampp/htdocs/MMO_ACS2/Scripts/

That’s should be the situation:

Once you did that, you’re half ready!

Open up ‘database.php’:

Here you will have to say where the database is and how to access to

it. If you’re sticking with XAMPP and this guide just leave everything

as it is, otherwise if you’re using a real server insert the host and

database information here.

The only thing that you’ve to modify is the

SUPPORT_EMAIL_ADDRESS, XAMPP requires a very little and

fast configuration to let you send emails from localhost.

You can see a discussion on Stack Overflow regarding this here:

https://stackoverflow.com/questions/15965376/how-to-configure-

xampp-to-send-mail-from-localhost

https://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost
https://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost

The last thing that you have to do is to import the database.

Open the XAMPP panel and click on the ‘Admin’ button in line with

MySQL:

This will open up PhpMyAdmin, a software that allows you to

manage your databases:

From there create a new database with the same name as the field

‘DB_NAME’ in the script ‘database.php’.

Now all you have to do is to import the .SQL file present in your

Unity Project:

/YourUnityProject/MMO ACS 2/Database/mmoacs2_db.sql

On PhpMyAdmin:

To do that:

Now the database is imported, and you’re ready to start using MMO-

ACS 2!

The last thing you may want to setup is a class inside the project:

“WebAddresses.cs”:

Adjust those addresses and you’re ready to start with MMO ACS 2!

Client side the Login and Registration process is handled by

‘LoginRegistrationManager.cs’, attached to the GameObject

‘Login/Registration Manager’ in the Login scene.

This script is very simple, it holds some references to the

GameObjects who contains all the UI for the Login and Register

section, and of course every InputField.

The Login and Registration process is nothing more than a

UnityWebRequest sent with a WWWForm.

If you don’t know those classes check the official documentation:

UnityWebRequest: https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html

WWWForm: https://docs.unity3d.com/ScriptReference/WWWForm.html

The request for the login is asked on the server to the script

‘login.php’. While for the registration we call ‘register.php’. You

will find all the .php code commented.

Mainly what the ‘login.php’ script does is to check:

 If the received form is correct.

 If the values in the forms are safe for being processed.

 If the inserted account exists.

 If the inserted password is correct (after being encrypted).

 If the account is banned.

 If the account is active.

If all those conditions matches, the user will be able to login.

Otherwise he will be prompted with the response for his case.

https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html
https://docs.unity3d.com/ScriptReference/WWWForm.html

The ‘register.php’ works almost the same:

 If the received form is correct.

 If the values in the forms are safe for being processed.

 If the inserted account name is not used yet.

 If the inserted email is not used yet.

If all those conditions match the last thing the script will do before

terminating its execution and returning a message to the client is to

send an email to activate the account on the address the user inserted

while registering.

Otherwise he will be prompted with the response for his case.

So the register.php contains the activation email, and there’s where

you should modify that thing:

The highlighted line shows where the user will be redirected, and it’s

to the script ‘verify.php’.

This script inside an HTML page will get the values from the URL

(email='.$POSTemail.'&hash='.$hash.') and validate them.

If everything is correct the Account will be activated and the user will

be able to login with his account.

Otherwise if those values are not correct, the user has probably tried

to manipulate the URL, in that case the script will simply stop the

execution and prompt the user with a message.

The last thing you can do from the Login scene is to open the ‘Forgot

Your Password’ link that must point to the script

‘recoverpassword.php.

That’s another HTML page with some PHP in it.

From there as you may already saw in the demo, after inserting the

email in the InputField, if the email is associated to an account in your

database the script will send a mail to the account.

So the last link that you have to modify is in this script:

The resetpassword.php is another HTML page that will let the user

reset his password.

In the Login scene you may have noticed the “GameResources”

GameObject, with its script attached.

This script holds a collection of Assets used in the game.

You can see this class like a replacement of the ‘Resources’ folder

and its slow loading times. From this class you can load at runtime a

Race, a GameClass or a GearPiece just by passing the ID. This class

comes extremely useful when we have to convert the IDs from the

database to actual game data (Race, GameClass, equipped Gear).

Still on a production I would recommend to use Assets Bundles

instead.

The first thing after a successfully login that he user will see is a list

of servers. In the default case those servers point to nowhere.

The server selection is indeed just a template that you may or not may

want to have in your game.

The Server Selection system is composed of 2 scripts:

 ServerSelectionManager: Manages the servers and will

manage the connection to your servers.

 ServerInList: Represent a server and its information, like

Latency and Population.

Whenever we press the ‘Join’ button on a server we’ll call :

public void ConnectToServer(ServerInList server)

In this method you’ll have to insert the code to connect to your

servers.

Nothing more. In the Demo the Game Server doesn’t exist since we’ll

join in a local scene.

Before getting into the actual Character Selection, Creation and

GameScene, let’s see how we are able to create the data of the game.

To create a new Race:

Right Click on the Project Window -> Create -> MMO ACS 2 ->

Races -> New Race:

For creating a new race what you need to have is:

 A prefab of the Male Model of your Race.

 A prefab of the Female Model of your Race.

Those two prefabs are called ‘Base *Race* Model’.

Those prefabs represent the ‘naked’ model, without any type of gear,

hair or any other detail.

Every ‘Base *Race* Model’ must have those components attached:

 An Animator with the correct Avatar.

 GFXCharacter script with the ‘BodyMesh’ set.

BodyMesh, in GFXCharacter is the SkinnedMeshRenderer of the

model. This must be set manually while the other fields must remain

empty since they’ll be set at runtime.

To work with the Equipment System, your Models should have the

same BlendShapes of the ones in the project. But don’t worry. If

you’re not planning to add those specifically BlendShapes, if you

want to remove some or not use them at all you are able to modify

that and I’ll explain how in this documentation.

Let’s take a look at the RaceCreationWindow:

We have to setup some data here, like the Icon, the Base Models

we’ve talked before, modifications for the Race and on the right what

class can be used.

 ID: Identifies univocally a Race. It’s extremely important that

this value doesn’t change once it’s saved on the database.

When a character is saved on the database, his race will be

identified by the ID. So if we create a ‘Human’ (ID:0) in the

Game and then modify the ID of the ‘Human’ ScriptableObject

with the value of 1, you’ll get an error. It’s also important if

you’re not in the developing process to not modify the order of

Races. If we swap the IDs of the two races in the Demo, who

were a Human is now a Deamoran and who were a Deamoran is

now a human. Also don’t assign the same ID to different races,

you’re anyway not allowed to do that since the Window will

prompt you an error.

 Race Name: The Name of the Race in the game, what will be

displayed on the character selection and in many other

situations.

 Section ‘Male’ and ‘Female’: Here you can assign the details

of your Race, how he moves (Animator) and how he looks like.

To add a new Skin Colour, a new HairType or HairColor you

only have to add a new element to those arrays.

* Remember that for the array ‘MaleHairTypes’ and ‘FemaleHairTypes’ the

Element 0 must be null since the value 0 of the HairType says that the

character is bald.

On the section ‘Can Use Classes’ you decide what classes will be

able this Race will be able to play. This section is automatically built.

That means if you add a New GameClass to the project it will appear

in this section.

Here is a completed Race:

To create a new GameClass:

Right Click on the Project Window -> Create -> MMO ACS 2 ->

GameClasses -> New GameClass:

For the ID it’s the same thing of the Races.

 Initial Stats: Defines the initial stats of this class (upon

creation).

 Starting Gear: Defines the starting gear of this class (upon

creation).

 Class Name: The Name of the GameClass in the game, what

will be displayed on the character selection and in many other

situations.

 Class Description: The description of the GameClass that will

be displayed on the Character Creation.

When a new class is created if you modify an existing or add a new

race, you will be able to choose if that race can use the new class:

To create a new GearPiece:

Right Click on the Project Window -> Create -> MMO ACS 2 ->

Gear -> New Gear Piece:

For the ID it’s the same thing of the Races and GameClasses.

 Name: The Name of the GearPiece in the game.

 Hide Hair?: Should the hair disappear if this item is equipped?

This is mainly used for helmets.

 StatsModifier: Define which stats this piece affect and how.

 GearSlot: Define the slot of this item.

On the upper-right you can see the ‘Gear Models’, here you have to

assign for both genders the models of all the races.

Every Race created and present in the project will be displayed here.

Assign the prefabbed SkinnedMeshRenderer for every Object field.

With the ‘BlendShapes’ button you can define the BlendShapes

modifiers when this gear piece is equipped. If we’re equipping an

armature we may want to shrink the chest of our character model to

prevent clipping the body with the armature model.

If we click on the BlendShapes button this Window will appear:

Since you may want to have different models for the gear piece you

can define different SkinnedMeshRenderer and BlendShapes for each

Race and both genders.

As seen that Races, Classes and GearPieces utilizes IDs for

identifying a specific thing in the project. A conflict or a mismatch of

IDs will surely lead you to bugs.

Remember that every Race, GameClass and GearPiece must have

unique ID.

You can open up the MMO ACS 2 Helper Window to help you with

those checks from Windows -> MMO ACS 2 -> Helper Window:

The window will pop-up:

It is organized in tabs:

 Races: List all the Races in the Project and allows you to run an

‘ID Conflict Check’ with them.

 GameClass: List all the GameClasses in the Project and allows

you to run an ‘ID Conflict Check’ with them.

 GearPieces: List all the GearPieces in the Project and allows

you to run an ‘ID Conflict Check’.

 Other: Allows you to run general fixes if something in your

project is wrong.

CONFLICT CHECK:

Let’s look at this situation, we have two Races in the project with the

same id (0):

If we run a ‘Check for ID conflicts’ this will be the result:

The console will provide us all the information we need in order to fix

the issue:

The other tabs will just display all the GameClasses/GearPieces in the

Project and will let you run a ‘Conflict ID Check’.

Don’t forget to often use this tool!

Let’s see how we can retrieve the data of a character from the

database and show it in the game as a Character.

The “CharacterSelectionManager” class will do that. We’ll see how

it works, it’s very important that you understand how we take and

distribute Characters data from the database to the Character UI

representation and then to the game.

For understanding the CharacterSelectionManager class we have to

firstly take a look to other few scripts.

In the Character Selection we have a UI representation of the

characters bounded to our account:

Those UI elements are instances of the prefab: ‘CharacterInList’.

Those prefabs are composed of Texts and a ‘CharData’ GameObject.

They also have a script attached that has same name.

The CharData holds all the data of a character. This data is filled

while we're retrieving the characters from the database, they are filled

from the script ‘Character Selection Manager’ and saved in the

CharData script.

Open up the CharData script:

You see that in this class we’ve got all the variables that we’ve

created in the database. As we said before the CharacterInList have a

reference to the CharData of the current character, this will be used

widely also later in the Demo scene.

Let’s return to the “CharacterSelectionManager” class.

This script manages the Character Selection; it achieves:

 Detecting Characters from the database and instantiate them as

‘CharacterInList’ prefabs.

 Sorting Characters in the list by ID.

 Delete characters.

 Allows to load the next scene.

So this is a really important part of MMO-ACS 2.

Let’s take a look on how we actually retrieve characters from the

database and transform them into ‘CharacterInList’, from there once

we’ve got the ‘CharData’ filled, we don’t have to do nothing more

than spawn the correct Character Model, assign the correct Race and

GameClass value and we’ll be ready to go.

In the ‘CharacterSelectionManager.cs’ jump to the IEnumerator

‘CheckCharacters’.

What we do in this IEnumerator, is to open the “checkcharacters.php”

script from our server with a UnityWebRequest. We’ll send that

request with a form that will contain the username we’ve used while

we were logging in. Remember that the Account static class have a

reference to the username, so that’s the parameter that we will send in

the form:

form.AddField("user", Account.user);

Now take a look on the “checkcharacters.php” to see how it works.

What it will simply do is to pick all the character of that username and

send them back to Unity with a specific syntax. If no characters exist

for that account it will simply return ‘0’ and from Unity we will ask to

the user to create a new character.

That’s what you will receive from the “checkcharacters.php” if a

character exists.

ID:3|NAME:Cyrodiil|GENDER:1|LEVEL:80|RACE:0|CLASS:3|

SKIN:0|HAIRTYPE:1|HAIRCOLOR:4|STRENGHT:0|AGILITY

:0|INTELLECT:0|SPIRIT:0|ARMOUR:0|CRITICALCHANCE:0

|MELEEDAMAGE:0|SPELLDAMAGE:0|HEADEQUIPPED:-

1|CHESTEQUIPPED:5|HANDSEQUIPPED:-

1|LEGSEQUIPPED:-1|FEETSEQUIPPED:-

1|RHANDEQUIPPED:-1;

It is that simple:

You have written in caps the index of a value (‘ID’), then you have

‘:’ (that means ‘equals’) and then it’s value (3).

After every values you will find the separator ‘|’, means that the

following index and value will be of another variable.

The last thing is the semicolon at the end ‘;’ that means all the data of

the current character has been echoed.

So all the columns of the database will be inserted in a string like that

and sent to Unity.

In the first example there was only the character named ‘Cyrodiil’ on

the database, in the following one there will be 2 characters, notice

where the ‘;’ separator applies.

ID:1|NAME:Vaultboy|GENDER:0|LEVEL:80|RACE:0|CLASS:0|

SKIN:3|HAIRTYPE:1|HAIRCOLOR:0|STRENGHT:0|AGILITY

:0|INTELLECT:0|SPIRIT:0|ARMOUR:0|CRITICALCHANCE:0

|MELEEDAMAGE:0|SPELLDAMAGE:0|HEADEQUIPPED:11|

CHESTEQUIPPED:6|HANDSEQUIPPED:12|LEGSEQUIPPED:

7|FEETSEQUIPPED:8|RHANDEQUIPPED:-1;

ID:3|NAME:Cyrodiil|GENDER:1|LEVEL:80|RACE:0|CLASS:3|

SKIN:0|HAIRTYPE:1|HAIRCOLOR:4|STRENGHT:0|AGILITY

:0|INTELLECT:0|SPIRIT:0|ARMOUR:0|CRITICALCHANCE:0

|MELEEDAMAGE:0|SPELLDAMAGE:0|HEADEQUIPPED:-

1|CHESTEQUIPPED:5|HANDSEQUIPPED:-

1|LEGSEQUIPPED:-1|FEETSEQUIPPED:-

1|RHANDEQUIPPED:-1;

The class ‘CharacterSelectionManager’ will take all this data and

manage it by itself by splitting characters and make life easier when

it’s about transforming this data into actual game characters.

 Query result is the data all together (like in the example above)

while Characters is an array of strings that contains every

character as an array element with its own data.

Note: you will always get an empty line at the end of the array.

Now we will perform some actions with those values, so how do we

pick them form that string?

There is a function in the ‘InputHelper’ class that does that:

InputHelper.GetData(characters[0], "ID:")

Where characters[0] is the first element of the ‘Characters’ array we

saw in the pick before and ‘ID’ is the index of the value that we want.

In this case this line of code will return “1” as a string.

You can use int.Parse, float.Parse etc to transform those strings to

numbers.

Now there are some functions that are explained in the code that

makes the magic happens, there are all as simple as loading a Material

from an ID, ordering a list by a value, instantiating UI elements and

spawning the character.

The InputHelper.GetData function will be widely used there to

transform IDs to their respective value in terms of game data, like the

GameClass, RaceData, Materials for the HairColor and Meshes for

the HairTypes.

Creating Characters is basically the opposite of Retrieving.

Instead of picking data from the database and get them to Unity we

will do the inverse, setting values from Unity and send them to the

database.

The process is handled by simple Toggles and Buttons. If you take a

look at the functions that the Toggles and Buttons calls when they’re

clicked everything will be self-explained.

There is only one thing to mention about the Class selection, as you

saw while creating a character you can select which classes can be

used for a specific race.

To automate this process while creating a character, so to disable the

toggles and the UI of a non-available class for the current race we use

one script: ‘GameClassInCreation.cs’.

Its usage is extremely simple; you only have to set those values in the

inspector:

Everything will be managed from the system. Errors like ‘Character

Name is Already In Use’ or ‘Invalid Name’ will be managed server-

side, when we press on “Create New Character” and send a form to

the script “createcharacter.php” it will firstly validate all the data, then

if everything is ok it will create a new record on the database with our

new character.

Otherwise it will return an error message that will be managed from

Unity.

In the Asset a Demo of what you should do next on your project is

included.

Here we will spawn our character model and attach it to a very simple

Character Controller that will let us move him around.

There are some NPCs in the World and some interactions like

changing gear and level is already scripted to give you an example on

how to change and save data at runtime. This should let you start

actually working on your project.

From the Character Selection Screen if we press on “Enter World”

few things will happen:

 The parent of the Spawned Character Model will be cleared.

 The parent of the CharData of the selected character will be

cleared.

 The parent of the CharData will be set to the Spawned Character

Model.

 The Spawned Character Model will be flagged with

‘DontDestroyOnLoad’.

 The Loading Scene will be loaded.

The Loading Screen is managed by the script “FakeLoading.cs” that

will fake the load by adding some extra seconds before loading the

actual level where we can play (“3) World”).

The first thing that will happen into the World scene is in the script

‘SpawnManager.cs’. As the name may suggest this script will manage

the spawning process of our character, including setting up the UI and

parenting the Character Model to the Controller.

The SpawnManager is initialized in the scene like that:

It will perform those actions:

 Taking a reference to the Character Model by its tag

‘GFXCharacter’.

 Parenting the Character Model to the Controller and resetting its

position.

 Setting reference to the Character Data and animator.

 Setting up the UI (Name, Image etc) thanks to the CharData.

With that done we have our character model able to walk around the

world.

Other actions that we do in this level includes saving at runtime the

state of our character to the database. Indeed, if you change the gear

or the level of the character by interacting with the NPCs and then

logging out, you will see that the changes will persist.

This is managed by the script ‘RuntimeSaveManager.cs’.

To save the state to a character you only have to call the following

method from every script:

RuntimeSaveManager.instance.SaveCharData(characterData);

With this example you should be able to save at runtime any data you

will want to have in your game. Still you can use any method you

may prefer.

Let’s now take a look at the PlayerController class and how we

simply interact with the NPCs in the world:

You can read the code and the comments of this script, It’s all

explained.

What this script do:

 Transform the Input of the Axis (Vertical and Horizontal) into

forces applied to our rigidbody.

 Makes the Animator function properly.

 Shoots Raycasts to detect NPCs.

 Open Dialogs (by simply enabling UI GameObjects) if a NPC is

near and a key is pressed.

The Dialogs are really simple, they’re a collection of Buttons that

does more or less the same action.

Those actions are written in the ‘ChangesAtRuntime.cs’ script. Here

you can see how to modify CharData at runtime, like the character

Level and how to equip and unequip gear and spawn the correct

model with the correct Blendshapes.

That’s all you have to know to kick-start your project.

In the next sections I will show step by step how to add new data to

the database and back, how to add new races, new classes and new

gear.

Create a New Class and configure it from the Inspector.

Be sure that the ID is not the same as another class.

Insert the New Class in the correct GameResources array:

Open a Race will be able to use this New Class and by configuring it,

flag it as usable class:

Open the “1) Character Selection” scene and modify the Creation UI

by duplicating an existing class and modify the icon:

The last thing to modify is the OnValueChanged of the Toggle and

the fields of the script ‘GameClassInCreation’.

After this, your new class is ready to be used.

Create a New Race and configure it from the Inspector.

Be sure that the ID is not the same as another race.

Insert the New Race in the correct GameResources array:

Open the “1) Character Selection” scene and modify the Creation UI

by duplicating an existing Race and modify the icon:

The last thing to modify is the OnValueChanged of the Toggle.

And your race is now ready! In this example it will look exactly like

the Human race, you should import new models, animations and

customizations.

Remember that all the GearPieces that are now present in the Project

will need to be uploaded since they need the meshes for the new race:

If you don’t add meshes to the new races in every gear piece you will

encounter error when trying to equip a piece.

You can create a new Gear Piece just like you’ve created the Race

and the GameClass.

Create a New Gear Piece, configure it and assign it into the

‘GameResources’ ‘Gear Pieces’ array and it is ready.

There are few scripts to modify to add a new variable that will be

used in the system.

In my case I will create a variable named ‘EarringsType’. It will be an

integer that will represent the ID of the equipped earring. You can

make it work as a GearPiece or just as a mesh. The purpose of this

example is to show you how, what and where you have to write that.

The first thing I will do is to create a new column in the database on

the ‘Characters’ table:

Then I’ll open the script ‘CharData’ from the Unity Project, and add a

new variable with the same name and type of that we’ve made in the

database:

Now we have to modify the query we do to the database when we ask

for all the columns values and when we create new rows, specifically

we also want to include that new column we created earlier:

Open the PHP script “checkcharacters.php”:

Add the new column in the SQL Command:

Last thing here is to modify what will be sent to Unity, the long

‘echo’ function will do that, add the new column with the value took

from the database:

You may also want to send this variable when you create a character,

let’s say this will be a customization. In this case you may also want

to modify the ‘createnewcharacter.php’:

Add a new variable that equals what’s sent in the POST form at index

‘EarringsType’.

Modify the query that insert a new record to also include the new

variable:

At the time we execute the query, we also need to bind the new

created parameter (:fEarringsType) to the value we’ve got from the

POST form before:

Last two steps and all will be ready!

Open up the script ‘CharacterSelectionManager’, like said before in

this script we will load and transform the data we’ve got from the

database to actual player data. Reach the ‘CreateNewCharacterUI’

function and set the newCharData.EarringsType value to what we’ve

found on the database:

The very last thing is to update the ‘CharacterCreationManager’

script and make the FORM sent to the script ‘createnewcharacter.php’

to also include the new variable:

You’re all done at this point!

You may want to actually make this variable do something like spawn

a mesh or modify a colour, just like every other variable acts.

You only have to define what have to happen if that value changes,

you already have the variable sent to the database at the moment of

creation of the new character and when an existing one has been

retrieved.

That means if you code that if ‘EarringsType’ will define mesh

spawned on a character all you have to do, like the HairType, is to

spawn a mesh while the character creation screen (maybe with UI

buttons) and spawn it when the character is retrieved.

I suggest you to read a bit of code specially where the HairType is

handled, it’s really about few lines on instantiating meshes.

Now you should have learnt all the elements of MMO Accounts &

Characters System 2 and you’re definitely ready to start building your

MMO, after you’ve practiced a bit with all those elements.

For every type of problem or questions you have regarding the Quests

Creation Kit do not hesitate me to send me an email at

“silvematt@libero.it”, I’ll do my best to help you!

I really wish you all the best for your project, thank you for using this

tool, I hope it will be a great booster and a resource to learn from!

